Wednesday, 3 March 2021

TESLA: Changing the Dynamics of the Semiconductor Industry

Overview:

The first thing that comes up in our mind when listening or reading the word Tesla is an electric vehicle, Nikola Tesla, or Elon Musk. Tesla is an automotive company which has changed the dynamics of the automotive sector by providing affordable electric vehicles. In the past years, Tesla has also changed the dynamics in the semiconductor industry. Now you may wonder how an electric vehicle company is associated with the semiconductor company. Well the answer is simple automotive chips. Automotive chips are silicon chips which are used by every automotive company. Silicon chip history has witnessed some significant innovation and development, whenever a company has approached an unique strategy or technique. Tesla is the best example of that.

The Best Chip in the World:

On April 22, 2019, Tesla held its autonomy day investor event in which a number of announcements were made. Some of the key announcements were the arrival of its Full Self-Driving Chip (FSC). It was designed by Tesla, but manufactured by Samsung. Elon Musk, the CEO of Tesla, proclaimed that it is “the best chip in the world”.  The FSC is actually two chips specifically created to prioritize the AI processing and decision making required to make full autonomy safe and reliable. The chip costs 20 percent less than the NVIDIA version. Before designing its own chip, Tesla used NVIDIA chips. NVIDIA, in a statement mentioned that a full system based on their chip will outform Tesla's chip. Although, they even appreciated Tesla, for raising the bar high in the self-driving industry.

Developing New Nano Chips:

Last Month South Korean Media Reported that Tesla is Partnering with Samsung Electronics to develop a 5 nanometer semiconductor for fully autonomous vehicles. Samsung Electronics has thus far been supplying 14-nm chips produced using argon fluoride (ArF) photolithography to Tesla. Yet the two companies are expanding their cooperation to in-vehicle infotainment (IVI) products loaded with 5-nm semiconductors. The power of chips in IVI products is expected to become more important as a 6G development race has begun in the United States, China, and Europe.

Development of 5nm semiconductor chips could be revolutionary in the semiconductor industry. Currently only a handful of companies are developing 7nm chips, and in between all this development of 5nm chips can provide both the companies a competitive advantage. If Samsung and TSMC can pull this off, they will be able to change the dynamics of the semiconductor industry, and Samsung will outsmart TSMC, which unveiled the world’s first 7nm chip.

 

 

Wednesday, 24 February 2021

Indian Semiconductor Industry: An Overview

Introduction:

India is one of the fastest developing countries in the world. India has a population of more than 1.3 billion people, and it has one of the youngest populations in the world. There is no doubt that India will play a crucial role in changing the dynamics of business and global trade in upcoming decades. Many foraging companies have achieved massive success in India. Still there is one industry which is finding it a bit difficult to find its foot in India. It is the semiconductor industry. Indian semiconductor industry is nothing when compared to the semiconductor industry of other countries. India hardly manufactures its chips, semiconductor fabrication equipment or other components of the semiconductor industry.

Indian Semiconductor Industry:

The global semiconductor industry is currently a little over $400 billion, and is expected to reach $500 billion by 2025. In comparison to this, India has negligible contribution to the semiconductor industry. Semiconductor manufacturing is very low in India. Indian Industry has imported components worth $50 billion in 2019. This shows that India is hugely dependent on the imports of the semiconductors. It can be dangerous in the long run, as the market situation is volatile as of now, due to chip shortage and growing tension between US-China.

What are the Problems for Indian Semiconductor Industry?

Various Indian companies have tried to establish semiconductor manufacturing units, which is known as Fab. Most of the times such projects didn’t take off due to one or another reason. At times the reason was lack of investment, skepticism about demand, lack of infrastructure, lack of high skilled employees, absence of vision policy, etc. India has developed back end testing, but still lacks in front end components needed by semiconductor manufacturers to manufacturer chips. All of these have made India dependent on the import of semiconductor chips.

Semiconductor Vision Policy:

What indian semiconductor industry needs as of now is a vision policy for companies, both domestic and international, explaining how India plans to move forward. The need for a vision policy is also needed as the demand for semiconductors is increasing exponentially in India, as the demand for electronic devices is surging since the past decade. As the demand will grow, India’s dependence on imports will only harm the industry more. Thus, Indian government and companies should find a way to establish domestic industries for semiconductor manufacturing. Secondary industries to the semiconductor industry are also needed to establish for smooth conduct of business. Indian companies can collaborate with international giants like Intel, Samsung to conduct a joint initiative project. If nothing is done soon, the Indian Semiconductor Industry will be in big trouble.

 

 

 

Friday, 19 February 2021

Overall Impact of Corporate Structure on a Company

Overview:

The corporate structure of a company, also referred to as organisational structure, is an important component of any business entity which determines the flow of communication, authority, and responsibility in an organization. A company's corporate structure has a huge impact on its success, on employees performance, and on other factors. For example, if we look at Intel corporate history and structure, it has always been about innovative approaches where any level of employee is allowed to give his/her contribution in the company's innovation policy and strategy.

Impact of Corporate Structure on Employee Performance:

There is no doubt that corporate structure has a direct impact on the performance of employees. For example, in a tech company like Intel, where continuous innovation is needed to keep up with development in the market, the role of employees is crucial. Since the time of Gordon Moore itself, Intel has focused to keep a balance between corporate structure and employee performance, giving employees the freedom to innovate and express their opinions on strategy and policy of the company. A well defined corporate structure like formal hierarchical structure benefits the employee performance, by clearly defining the roles and responsibilities, as well laying out the boundaries of authority. The vice-versa can affect the employee performance drastically. According to a research, employees preferred for them to experience job satisfaction. 8% of the respondents opted for centralized decision making, 36% indicated that there is a need for decentralized decision making system, 52% responded that group decision making would help workers in achieving job satisfaction and remaining 4% responded that individual decision making would help workers in achieving job satisfaction.

Impact of Corporate Structure on Company’s Performance:

Different corporate structures have a varying degree of impact on a company’s business performance. Hierarchical corporate structure has its own pros and cons with regard to business performance. Quick, low-cost decision-making and flexibility increase because of hierarchical structure. While too much dependence on the top level for decision making is something which is a major concern in a hierarchical structure. On the other hand the matrix structure allows accountability and responsibility at different levels, but it is a complex structure in a big organization, like big tech companies such as Apple, Intel, etc.

Impact of Organizational Structure on Business Productivity:

Organizational structure is what groups people in a certain way. There are various factors of organizational structure which affects the business productivity. Some of these factors are functional structure, divisional structure, team structure, influence of managers, level of creativity, growth opportunities etc. All of these factors contribute in determining the productivity of a company.

SUMMARY:

There is no perfect corporate structure. Every organisation should adopt the corporate structure which suits their business, employees, and stakeholders. If the corporate structure is incorporated without keeping these factors in mind, it can have drastic consequences for an organization.

 

 

 

 

Friday, 29 January 2021

Leading Companies of Automatic Testing Equipments

What is Automatic Testing Equipments:

Automated Test Equipment is one of the most important tools in the semiconductor industry. The role of ATE’s is very significant as it helps in testing the products on different parameters. Automated Test Equipment (ATE) is used to find defects in Devices Under Tests (DUT) and helps to ensure the quality of devices. The adoption of ATE plays a very important role in saving manufacturing costs and helps to eliminate faulty devices from entering into the market. But this doesn’t mean that the role of Automated Test Equipments is limited to the semiconductor industry as it is also used widely in other industries, especially in electronics and tech industry.

There are many companies which have gained popularity in this particular market of the semiconductor industry. The HP tester 4072A, is one such advanced parametric tester. The HP 4072A is an all-in-one test solution that meets your advanced process needs by providing high-throughput parametric test, Flash memory cell evaluation, ring oscillator measurement, and wafer level reliability (WLR) test capabilities in a single measurement station.

Leading Companies in the ATE’s Market:

ATE is important in automatically diagnosing and testing faults in semiconductor wafers, integrated circuits, chips, printed circuit boards, and other electronic components. The ATE holds a significant position as it allows the manufacture to eliminate inferior products and enhance the overall performance of the product. The global semiconductor automated test equipment market is anticipated to witness growth due to increase in demand for System-on-Chip (SoC) products in consumer electronics applications such as smartphones tablets, and laptops, among others. The surge in the demand of the Automated Test Equipments is boosted by increase in the demand for the consumer electronics. These electronics include, smartphones, tablets, computers, tablets, and home entertaining systems among many others. The major players in the automated test equipment market include: Teradyne Inc. (U.S.), Advantest Corporation (Japan), and LTX-Credence (U.S.). The total value of the automated test equipment market is expected to grow at a CAGR of 2.80% from 2014 to 2020, and reach $4.13 Billion by 2020.

SUMMARY:

There is no doubt that the role of Automated Test Equipments is crucial and in upcoming time, more advanced ATE solutions will be needed for efficient and unprecedented performance from products. As of now the key geographic markets for ATE are the US, Europe and Asian countries such as China, Taiwan, Japan and South Korea.

 

 

 

Thursday, 21 January 2021

Driverless Cars: A Peek into the Future

Introduction:

There is no doubt that technology has transformed the world. Technology has not only Paved the path for a modern era but has also made the life of people so easier. From wireless technology to connectivity we are surrounded by technological advancements from all sides. One such technology is the Driverless Cars. Driverless Cars will change the course of the automobile industry in the future, there is no doubt about that. A number of factors will play a key role in determining the future trends of driverless cars. These factors will include technology level, mobility, semiconductor tools and technology, government restrictions and market patterns. In this article we will discuss about how driverless cars can change the future.



Ways in which Driverless Cars can change the future:

The recent leaps and bounds in the self driving industry has made it crystal clear that self driving cars are the future of the automobile industry. Cars and automobiles, in general, are a huge part of our daily lives and society in general. Surprisingly, as humans we are prone to getting angry as soon as we are behind the wheel. But driverless cars will be operated by the computers and AI, and machines don’t get angry or frustrated. Following are some of the ways in which Driverless Cars can change the course of future:

1.   Reduced Number of Deaths related to Road Accidents:

According to a study the number of deaths caused by road accidents will decrease drastically because of self driving cars. As driverless cars are equipped with smart gadgets and navigation systems it can easily avoid such situations. The deaths related to road accidents will reduce as much as 70% because of driverless cars.

2.   Driverless Cars will be Eco-Friendly:

Driverless cars will be beneficial to the environment. Most of the self driving cars are equipped with an electric power mechanism system which enables it to run for several kilometres after getting charged once. Many technological leaps are made in this field as most of the companies are fighting on this particular aspect only to attract the consumers. Experts believe that semiconductor tools will play a key role in increasing the efficiency of electric batteries used in driverless cars.

3.   Reduction in travelling time:

Driverless cars will reduce the commutation time as it will choose those paths only which have lesser traffic. Self driving cars can optimise time efficiently and thus reducing the overall travelling time.

Summary:

In some countries, driverless cars have already made their debut on testing and limited trial basis. Experts believe that in the upcoming 5-10 years, the driverless cars industry will be one of the fastest emerging industries in the world. This will also boost the growth of other industries dependent on self-driving industries, such as the semiconductor industry, electronic industry and tech industry.

 

Monday, 18 January 2021

Types of Silicon Wafer

What is Silicon Wafer?

A silicon wafer is a thinly sliced piece of material which is most commonly used in semiconductor. As semiconductor is widely used in almost every electronic and digital device/product/equipment, the demand for silicon wafer always remains high. Manufacturing wafer is the very first step in the semiconductor manufacturing process. Due to it’s wide use in semiconductors, silicon wafers are sometimes also called as semicon wafer, which is short for semiconductor wafers.

For different purposes and different products, different types of semicon wafers are manufactured. Each type of wafer has its own function, characteristics, and applications. In this article, we will go through the various types of silicon wafers and its application.

 

Types of Silicon Wafers:

Wafers are a key component in semiconductor manufacturing. If the wafers are of inferior quality or faulty in nature, then the semiconductor unit will be useless. Thus, utmost care is taken while manufacturing silicon wafers. Also, each wafer type has its own set of characteristics and thus it is necessary to use the correct wafer for the correct process. Following are some of the common types of silicon wafers:

 

Undoped Silicon Wafer: Undoped silicon wafer is pure silicon wafer, which is also known as an intrinsic silicon wafer. This type of wafer is in pure, crystalline form. It is one of the best kinds of silicon wafer to use, as there is no impurity in its material. In this kind of wafer dopant is not present throughout the wafer.

 

Doped Silicon Wafer: In this type of silicon wafer certain amount of dopant(impurities) is added during the manufacturing process. If the level of dopant in the silicon is low to moderate, then it is known as extrinsic silicon wafer. If the dopant level is high, then that kind of wafer is known as degenerate silicon wafer. The dopants added in the wafer is used to alter the electrical properties of the wafer. There are basically two types of doped silicon wafers:

·      P-type Wafer: In this type of doped wafer, boron is added for impurity. This type of wafer is mostly used in lithography machines.

·      N-type Wafer: In this type of doped wafer, phosphorous or arsenic is used for doping. N-type wafer is widely used for manufacturing of advance CMOS devices.

Polished Silicon Wafer: This type of silicon wafer is polished on both the sides to give it the appearance of mirror surface. This type of wafer is pure, flat, and it is superior in quality.

Summary:

Since past few decades the demand for silicon wafers has grown exponentially. This is because of the surge in demand for electronic devices and gadgets. Because of this, superior quality of silicon wafers are developed in the market which is making the competition among the manufacturers more intense.

Wednesday, 13 January 2021

Role of Industry Associations

 What is an Industry Association?

An industry association also known as trade association, trade or business group, business association or sector association, is a body founded by companies operating in a specific industry. An industry association participates in improving the industrial relations, advertising, education, lobbying, redressal of disputes. The main function of an industry association is to protect the rights of various companies in the industry, to upgrade their status and to promote and establish collaboration among various companies in the industry.

European Wind Energy Association (EWEA), Association of British Travel Agents (ABTA), Confederation of British Industry (CBI), SemiconductorIndustry Association (SIA), Bicycle Manufacturers National Association, Associated Chambers of Commerce, and Industry of India (ASSOCHAM) etc are some of the famous industry associations in the world.

Significance of Industry Association:

The significance of industry association is quite critical. As not only they keep the industry environment favourable for business, but they are also the voice of the companies in the industry. Industry associations provides growth opportunities to its members, cooperation among various businesses, as well as addressing any conflict among various industries and resolving them by methods of arbitration, discussion, and mutual settlement.

Role of Industry Associations:

Different industry associations have different roles. Each industry association has its own set of objectives, goals, and mission. But the common objective of almost any industry association is to safeguard the interest of members of the industry and to provide them support whenever such need arises. The role of Confederation of British Industry (CBI) will be different from what role Semiconductor Industry Association (SIA) plays. There are a number of factors which plays a key role in determining the degree of role of an industry association will play in the specific industry. Following are some of the standard roles of Industry Association:

Voice of the Industry: There is no doubt that industry association is the voice of the industry. On behalf of its members industry association presents themselves in front of government, external stakeholders, or judiciary system. Not only industry association fights for the rights of its members but it also promotes awareness in the industry from time to time.

Research & Development: Industry association promotes various companies to come together and collaborate in boosting the research and development process of the industry. Collaboration in the field of R&D is found in electronics industry. Semiconductor Industry Association promotes the joint efforts of various companies to boost R&D.

Networking: Industry Association makes it possible for the industries to network with the industry professionals from everywhere. This networking helps the industry in long term, by introducing efficient products and technologies, recruiting exceptional talents, and implementing proactive strategies.

Promoting open and Fair Trade: This is one such role which is applicable to all industry associations. The reason being is in today’s competitive world companies often uses malpractices to promote sales and revenue of their company, hence it is necessary that all companies should follow fair practices. Thus, industry associations lays down the policies, rules, and guidelines to be followed for open and fair-trade practices.

Epilogue:

Industry Associations offers creation of standards, best practices, educates the members, development initiatives, acts as a bridge between industry and government, technical standards, leadership roles, and regulating competitive environment. Thus, the role of Industry Association is quite significant. They do face some challenges, but the pros outweighs the cons by a huge margin.  

Monday, 4 January 2021

What is a Cleanroom?

In the production of certain devices and equipment’s special rooms are used to control the surrounding environment and to keep it as clean as possible. The reason behind this is if the manufacturing or other technical processes are carried out in normal surroundings then several factors can hinder the manufacturing process and may impact the quality and efficiency of the product which is produced. This is the reason why the concept of Cleanrooms was introduced.

What is Cleanroom?

The modern cleanroom was invented by American physicist Willis Whitfield in 1960.  A cleanroom is any given contained space where provisions are made to reduce particulate contamination and control other environmental parameters such as temperature, humidity, and pressure. A cleanroom design could be of any size from just a few meters to hundreds of square meters. A cleanroom should be built with those kinds of materials only that are not contaminated, polluted or harmful in any sort of manner. On the basis of how clean the airflow is, cleanrooms are classified.

Cleanroom Protocols:

There are various protocols and standards that are needed to be followed to keep the internal environment of cleanroom clean and decontaminated. Following are certain cleanroom protocols and standards to be followed:

·      The airflow of cleanroom should be clean. Cleanrooms maintain particulate-free air through the use of either HEPA or ULPA filters employing laminar or turbulent air flow principles. Laminar, or unidirectional, air flow systems direct filtered air downward in a constant stream.

·      Proper precautions should be taken while designing a cleanroom.

·      A cleanroom should be equipped with proper safety equipment’s to tackle any kind of emergency situation.

·      The operator must wear proper clothing such as Cleanroom suits to cover their body to minimize the dispersion of micro-organism from human hair, skin flakes, or clothing fibres.

Cleanroom Suits or popularly known as Bunny Suits Cleanroom, are a part of standard protocol for an operator to enter into the cleanroom. This is a mandatory protocol because around 70-80% of cleanroom contamination are operator-based contamination. Thus, to keep the cleanroom uncompromised and to keep the operator safe such suits are used.

These Suits are called Bunny suits as they are mostly white in colour. These suits include Boots, shoes, aprons, masks, gloves, headcover, coats, gowns, hand sleeves, etc.

Applications of Cleanrooms:

Most cleanrooms are used for manufacturing products such as electronics, pharmaceutical products, and medical equipment. It is also used for research purposes. There are a number of fields in which cleanroom has its application. These are:

·      Pharmaceutical Companies

·      Research Facilities

·      Manufacturing Companies

·      Aerospace Industry

·      Nanotechnology Production

·      Manufacturing Companies

·      Optics and Lens Manufacturing

·      Medical Laboratories

·      Electronic Industry

·      Optics and Lens Industry

·      Biotechnology

·      Food and beverages Industry

Cleanroom Market:

The cleanroom market size has never shown a downwards trend as the research and manufacturing processes are getting complex day by day and the demand for higher quality and advanced products is increasing exponentially. Due to this reason, there has been a sizeable growth in the cleanroom market. he global cleanroom technology market size was estimated at USD 3.7 billion in 2019 and is expected to grow at a compound annual growth rate (CAGR) of 3.8% from 2020 to 2027. Technological advancement, stringent regulatory standards, and increased demand in pharma and biopharmaceutical companies to develop quality products are some of the major factors fuelling the market for cleanroom technology.

Thursday, 31 December 2020

What is X-Ray Lithography?

Introduction:

With each passing day, the manufacturing and production process of products is getting improved. Earlier most of the production and manufacturing operations were carried out manually. During industrial revolution use of machines was popularized and mechanical and manual machines were widely used in the industries. With the advancements in the field of technology such as invention of computers allowed the industries to adopt automation as the primary method of production and manufacturing of goods. These processes involve quite several complex and technical sub-processes. From categorizing the raw materials to manufacturing finished goods, several processes are used for production, categorization, assembling, moulding, diversification, wiring and printing and others. One such process is X-ray lithography.

What is Lithography?

It is the process of printing patterns on a thin film called resist, using localized interaction between this layer and the particle beam. Since ancient days, when lithography technique was used to imprint artworks or paintings on the paper or sheet. A smooth surfaced lithographic limestone was used on which the drawings or figures are drawn with help of oil, water, and wax, and then that drawing was imprinted on the paper. This technique was mainly used for printing text or artwork.

In modern times, the way lithography works has changed. Semiconductor industry used the concept of lithography and modernized it to manufacture Integrated Circuits and MEMS by photolithography. Today various types of lithography methods are popular such as:

·      Photolithography

·      X-Ray Lithography

·      Electron Beam Lithography

·      UV Lithography

·      Nano Lithography

·      Nano imprint Lithography

·      Soft Lithography

·      Scanning Probe Lithography

·      Colloidal Lithography, etc.

In this article we will discuss about the X-Ray Lithography, its advantages, application and how it works.

X-Ray Lithography:

X-Ray Lithography is a process why uses x-ray beams to imprint a geometric pattern from a mask to the resist on the substrate. X-Ray resists are the substance which shows chemical or physical changes due to the exposure of X-Ray. The resist should be sensitive to the X-Ray so that it can absorb the X-Ray easily. X-Ray Lithography is remarkably similar to Photolithography and UV Lithography, the only difference is use of X-Ray in X-Ray Lithography.

Applications of X-Ray Lithography:

X-Ray Lithography is widely used in the electronic industry. It has several applications such as:

Ø For fabrication of Gigabyte DRAM.

Ø In manufacturing of semiconductors.

Ø Used in MEMS (Micro-Electro Mechanical Systems) technology such as Micro Sensors, Micro Actuators, Micro Electronics, and others.

Top X-Ray Lithography Companies:

USA, Japan, Taiwan, South Korea are some of the countries which develops the X-Ray Lithography process.

Companies like IBM, Motorola, NTT, Mitsubishi Electronics are some of the big names in the development and research of X-Ray Lithography.

Advantages of X-Ray Lithography:

·      It is a fast process of lithography.

·      It has High Resolution.

·      High Aspect Ratio.

·      Scattering effect is reduced by this method.

Disadvantages of X-Ray Lithography:

·      The cost of manufacturing masks is expensive.

·      It has thin lens.

·      Chances of Shadow Printing is more in this method.

·      Best results cannot be achieved in the absence of brighter X-ray source.

Conclusion:

The implications of X-Ray Lithography are many. It has revolutionized the fabrication process of semiconductors. It is a 70’s technology but still it is widely used today in almost every kind of electronic goods production. There is no doubt that X-Ray Lithography has changed the dynamics of fabrication and imprinting processes.


Wednesday, 16 December 2020

How computer chips are made

How computer chips are made

Computer chips are one of the most important components while manufacturing an electronic device or equipment. The chip is such a tiny piece of technology that literally keeps running our devices. The chip we use today is quite different from what it was when it was designed for the first time. Chips are maybe so tiny with respect to size but the process of manufacturing them is quite complex. A computer chip consists of transistors, capacitors, diodes. Several chip equipment manufacturers are providing different types of chips. The smaller the manufacturing process, the more transistors can fit on a single die. Intel is currently working on a 10nm chip size, while AMD is planning on developing 7nm. Taiwanese giant TSMC is working on 5nm chips. As the technology upgrades, the size of these chips keeps reducing fitting more and more transistors in a single chip. The process for producing a standard chip is almost the same except a few changes which are mostly related to the size of chips that are produced.

 


The process starts with a kind of sand known as silica sand. This sand is the main component in the making of chips. As these chips base material is silicon, these chips are often called as silicon chips. China is the leading producer of silicon holding 64% share in 2019. Then the silica sand goes through several purification and filtration to deliver electronic-grade silicon, which has a purity of 99.99%. A purified silicon ingot, which weighs around 100kg, is shaped from melted silica and made ready for the next step. The circular silicon ingot is sliced into wafers as thin as possible while maintaining the material’s ability to be used in the fabrication process. The silicon wafers are then refined and polished in order to provide the best possible surface for the following fabrication steps. Elkem Silicon Materials is one of the world’s leading suppliers of silicon wafers. This polished wafer goes through a procedure called photolithography, in which layer of photoresist is spread thinly across the wafer. This layer is then exposed to a UV light mask, which is shaped in the pattern of the microprocessor’s circuits. ASML is one of the leading manufactures of Photolithography machines. Exposed photoresist is washed off and the silicon wafer is bombarded with ions in order to alter its conductive properties – this is called doping. Etching and electroplating are the next steps in the process. Once electroplating is completed, transistors are ready and now the layering of interconnects is remaining. All the transistors are connected which is known as microprocessor. The penultimate step is to test the chip by various methods and at last these chips are packed. Before shipping processors are tested for efficiency, frequency, and other metrics and once they pass all these tests, they are good to be shipped.

 

 This is how computer chips are made. This process is complex and if even a single step is missed out or not performed properly, the whole thing will fall apart resulting in failure of a device. Today almost every equipment and device use these chips. The consequences of a failure of even a single chip can be severe. Thus the process of manufacturing chips is quite crucial and should be handled with delicacy.

 

Wednesday, 9 December 2020

The Dramatic Journey of Japan in the Semiconductor Industry

 

The History of the Japanese Semiconductor Industry:

Since the invention of very first semiconductor, the semiconductor industry has changed dynamically. An industry which only had few players in its early stage is today a global industry with a huge number of companies manufacturing semiconductors. Some of them like Intel are old players while some of them are new entrants. Semiconductor Companies from USA, Japan, South Korea, and Europe were the pioneers of what we today know as the semiconductor industry. Among all these countries the journey of Japan’s semiconductor industry has been the most dramatic one.



Japan’s rise to prominence in the semiconductor industry was widely chronicled and analysed in the 1980s. A consensus emerged around a few key factors. Perhaps foremost among these was government backing. In the 1960s, dominant government agencies demanded tough terms, including technology transfers, from foreign companies such as IBM and Texas Instruments that wanted access to the growing Japanese market. In 1970’s Japan’s Government pursued a more active and liberal policy for the foreign companies allowing co-operation with foreign counterparts. Collaboration in field of research and technology sharing led to growth of Japan’s semiconductor industry. The main product behind this rally of growth in Japanese industry was DRAM, a memory chip used in computer hardware in which Japanese companies were dominating the market globally. Hitachi, Mitsubishi, Fujitsu, Toshiba were showing unanticipated growth rates and they were rapidly becoming the market leader in this technology. These companies were directly competing with American companies like IBM and Intel. The Japanese government invested more than 70 billion yen in the semiconductor industry to compete in the market and for research and development.

 

The Rise & Fall of Japanese Semiconductor Industry:

In early 1980’s Japanese companies implemented the strategy of low price to rapidly occupy the market. The strategy worked and japan soared to the top place in the semiconductor industry. By 1989 the global share of Japanese companies in the market was 52%, while the share of USA was only 37%. Among the top 10 companies, 6 of them were Japanese companies. This was a huge milestone for the japan but this also resulted in their downfall. This unprecedented success story blindsided Japanese companies as they took their competitor taken for granted. In the early 1990’s because of the technological revolution the demand for DRAM which was the key product in the success story of Japan fell. The low-cost price strategy affected Japan as Korea, Taiwan mastered the technology of DRAM and as they manufactured the new generation of DRAM, Japanese companies suffered losses.

 

After suffering the losses from 1990’s, Japanese semiconductor companies started to heal themselves and to limit the loss. The government also intervened in stabilizing the industry. New technologies were introduced, and several new projects were initiated to inject the Japanese companies with a boost. The certain sector showed growth while some were able to manage their position after the sudden downfall. Even after facing such a downfall, Japanese enterprises occupy 50% or more shares in 14 important materials, such as silicon wafer, synthetic semiconductor wafer, mask, photoresist, pharmaceutical industry, target material, protective coating film, lead frame, ceramic plate, plastic plate, tab, COF, welding wire, packaging material, etc. the Japanese semiconductor material industry has maintained an absolute advantage in the world for a long time. Still, they must learn from their past mistakes and should be prepared for any kind of advancements or changes in this ever-changing market.

 

 

 

Friday, 4 December 2020

Is It Good to Invest in a Semiconductor Stock

Semiconductor Industry is a Huge Industry

The semiconductor market is the key sector to watch because chips play a vital role in new technologies. To find the best semiconductor stocks first a person needs to understand the health of the markets that purchase the chips for their products. Semiconductor companies design or manufacture computer chips and related components. They are a part of the technology sector. They are also the manufacturers, which means their business is cyclical, as a business is for companies is any manufacturing or commodity industry. Choosing stocks in this industry can be tricky and investing can be highly volatile. There different company who analysis and work in this segment you can visit VLSIresearch


Computer chips are the chips which have many uses but in the decade ahead semiconductor stocks will likely focus on two areas of growth.  The U.S.  is the country which accounted for nearly half of the $418 billion in global semiconductor spending in 2019. According to the Semiconductor Industry Association, the chips have grown to become the nation's fourth-largest export. With the one- fifth of the semiconductor makers the budgets being spent on the research and development. In other areas of the economy, the small hardware components are mainly responsible for many technological advancements.




The two companies like Skyworks Solutions and  NVIDIA are two of the industry who are the most promising investments. As the leaders in connectivity and GPUs, respectively and the emerging markets they have focused on have meant higher than average profit margins. These are the two companies which had money to invest in research to continue developing new products, pursuing new markets, and growing their revenue. The Skyworks Solutions (NASDAQ: SWKS) this standout in connectivity is a key Apple (NASDAQ: AAPL) supplier, having ridden the smartphone boom over the last decade. That market has matured in recent years, but  Skyworks has used its connectivity chip know-how to expand into new areas like the Internet of Things and 5-G networks. It has avoided some of the steeper falloffs in sales that other connectivity chipmakers have experienced while setting itself up for higher revenue in the years to come as mobile networks evolve. Wearable devices to the household appliances to the industrial equipment have started with the smartphone boom which has morphed into connected things. It has helped to lead the charge in developing 5G network equipment. It has also been replacing the lower sales and increasingly commoditized hardware from its legacy smartphone business with newer 5G equipment. 


Different Type Od Sector To Invest In Semi Industry


NVIDIA (NASDAQ: NVDA) is the company which has promising investments. It is a company that started out designing GPUs for the high-end computer game graphics that has been pushing the boundaries of the GPU into new markets. The company has also developed an extensive software library which is often free to use for its customers. It helps to smooth out the process of applying its chips to novel use cases like self-drive cars and artificial intelligence. For the AI industry as a GPU pioneer, it has a big head to start designing semiconductors. Spending on which is expected to increase nearly 30% a year. It will approach  $100 billion by the year 2023, according to tech researcher IDC. 


While looking for the semiconductor stocks to invest in, first a person should consider the key areas. Generally, investors prefer companies that can grow sales over time, but revenue growth matter even more for semiconductor stocks. Hardware like computer chips tends to get commoditized over time. If the new market grows quickly, then the other firms pile in with similar products, supply swells, prices fall, and the sales shrink. If a company don't constantly innovate and did not find the new outlets for its sales, the cycle could wind up being a roller coaster ride ending nowhere. The other keys that should be considered like the higher than the average profit margins. The higher the margins the smaller the holes in the net and the more dollars a company hols on to. The more dollars a company holds on to the greater its the ability to reinstall in research and improving its operations to ensure that it nets don't spring any large holes. So, a person should look at a semiconductor company's gross profit and operating profit. The higher the gross and operating profit margins, the better to a company's closet peers. For investing a person should look for the strong balance sheets. The people should check how much cash and debt a semiconductor company has on its balance sheet. Plenty of cash relative to debt means a company has lots of wiggle room to invest or make an acquisition. To invest in semiconductor stocks can be a volatile journey. Investors would do the best to buy during sales cycle slumps and reassess a company's performance relative to peers during boom periods. 


Thursday, 22 October 2020

Different Types of Integrated Circuit (IC)

Different Types of Integrated Circuit (IC)

If numerous electronic elements are interrelated on a single chip of semiconductor material, then that chip is known as an IC (Integrated circuit). It comprises of both active as well as passive elements.  Integrated circuit is also called chip or microchip. In addition, ICs are manufactured by patterning multiple layers of metals, dielectrics, and semiconductor materials. You can also know about IC market research for different types of integrated circuits and its uses.

The most essential benefit of Integrated Circuits (ICs) is their accessibility with the broad range of marketing styles, difficulties, and characteristics.

Different Types of ICs (Integrated Circuits)

There are mainly two integrated circuits types, analog integrated circuit and digital integrated circuit.



Analog Integrated Circuit: -

The integrated circuits which Function over a continuous selection of signal are known as Analog ICs. These are divided as liner ICs and RF ICs (Radio Frequency Integrated Circuits) (RF ICs).

Linear or analog ICs are applied as audio frequency amplifier as well as radio frequency amplifier. Voltage regulators, timers, Op amps and comparators are known examples of analog or liner ICs.

Digital Integrated Circuit: -

Digital integrated circuit come in many different subtypes, including them programmable integrated circuit, logic ICs, memory chips, power-management ICs as well as interface ICs.

They function with what are known as logic gates, which can be points where modifications to the circuit activity might be introduced at a yes/no or on/off manner.

This is completed using the old computer supply, binary info, which in digital integrated circuit utilize just 1 & 0 as acceptable values.

Mixed Signal ICs: -

Another group of ICs which operates on both analog as well as digital signals are the Mixed-Signal ICs.

Both the analog and digital integrated circuits are appear on the similar chip.

Applications consist of FM Tuners in media players, Digital to Analog or Analog to Digital Converters as well as Ethernet applications.

Benefits of Integrated Circuits (ICs): -

·      All integrated circuits are examined for running ranges in incredibly low and extremely high temperatures.

·       It is small basically about 20,000 electronic elements can be integrated in a single square inch of Integrated circuit chip.

·  As all the elements are manufactured inside the chip, there will not be any outside projections.

·       Integrated circuits use small power.

·       Reliability of Integrated circuits is high

·       The PCB comprising soldered joints will be fewer reliable.

·       Due to tiny size, the weight of the Integrated circuits also lowers, when contrasted to the discrete circuit.

·       Very simply expendable from the mother circuit.